Kathmandu University Department of Electrical and Electronics Engineering ANALOG ELECTRONICS LABORATORY WORK

EXPERIMENT 8: MOS Field Effect Transistor Characteristics

Objectives: To understand E-MOS characteristics and design a simple inverter and amplifier using an N-MOS

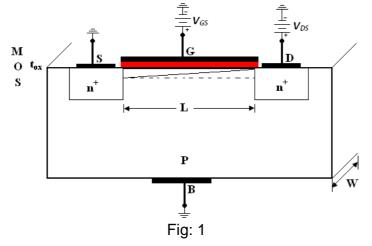
Software

Multisim 8

Theory:

In the NE-MOS of fig 1, when v_{GS} is less than v_t , the drain current i_D is zero irrespective of the applied drain potential because of two diodes connected in back to back fashion. When v_{GS} is higher than v_t , the channel gets induced and maintains uniform depth for small v_{DS} (*less than 50 mV*). The uniform channel is shown by dotted line in fig 1. MOS acts as a linear resistor whose resistivity is controlled by the overdrive voltage. When v_{DS} is increased, uniformity of channel depth is lost at the drain end and the channel gets completely blocked when $V_{DS} = V_{GS} - V_t$.

 $V_{DS} < V_{GS} - V_t$ (Triode Region, VCR region)


 $V_{DS} \ge V_{GS} - V_t$ (Saturation Region, Linear amplification region) pere characteristic of F-MOS in triode region is given by (1) and in

The volt ampere characteristic of E-MOS in triode region is given by (1) and in saturation region is given by (2).

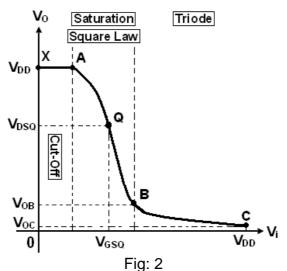
$$i_{D} = K_{n}^{\dagger} \frac{W}{L} \left[(v_{GS} - v_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$
(1)

$$i_D = \frac{1}{2} K_n \frac{W}{L} \left[(v_{GS} - v_t)^2 \right]$$
⁽²⁾

The ratio W/L is called the aspect ratio of MOSFET. $K_n = \mu_n C_{ox}$.

VTC of NMOS Inverter

The VTC of NMOS inverter in fig 4 is shown in fig 2. In the region XA, MOS is in the cut-off region. MOS enters saturation in AQB and the output voltage falls by square law relationship given by (3).

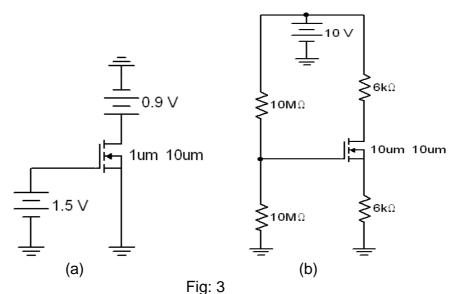

$$v_{O} = V_{DD} - \frac{1}{2} K_{n}^{'} \frac{W}{L} (v_{I} - v_{t})^{2} R_{D}$$
(3)

Gain of MOSFET in AQB is given by $-g_m R_D$, where $g_m = K_n'(W/L)V_{OV}$. We have neglected the channel length modulation effect. For small signal operation v_{gs} around the quiescent should be << $2V_{OV}$.

In BC, MOS operates as almost linear resistor. The output voltage falls as given by (4).

$$v_{O} = V_{DD} \frac{r_{DS}}{r_{DS} + R_{D}}$$
(4)
$$\bigvee_{O} \qquad \text{Saturation} \qquad \text{Triode}$$

$$\uparrow_{DS} \qquad \text{Square Law}$$

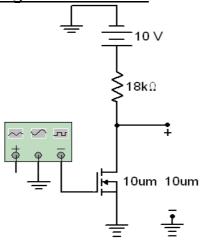


<u>Volt Ampere Characteristics</u> Procedure

- 1. Connect the circuit as shown in fig 3 (a). Set 3TEN Virtual MOSFET parameters as, W=10um and L=1um, VTO=0.7, KP=100e-6.
- 2. Complete table 1.

V _D	Operating Region	I _D L=1	Ι _D L=0.5	
0.5				
0.9				
3				
Tables A				

Table: 1

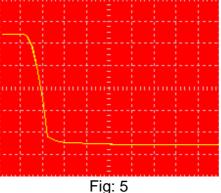


- 3. Connect the circuit as shown in fig 3 (b). *W*=10um and *L*=10um, VTO=1, *KP*=1e-3.
- 4. Complete table 2. *While calculating theoretical values assume that the MOSFET is working in the saturation region.*

Result	V_{G}	Ι _D	Vs	V _{GS}	V_{D}	V_{DS}	l _G	I _S
Theoretical								
Software								

Table: 2

MOS Resistive Switching Characteristics



Procedure

- 1. Connect the circuit as shown in fig 4. *W*=10*um* and *L*=10*um*, *VTO*=1, *KP*=1*e*-3.
- 2. Set the FG as 1 kHz, 5 V amplitude with 5 V offset, sine.

- 3. Connect CH1 of OSC to input and CH2 to output. See in YT mode the switching characteristics of MOSFET. *Use DC coupling mode.*
- 4. Change the oscilloscope display format to XY mode. The VTC will be seen like as shown in fig 5._____

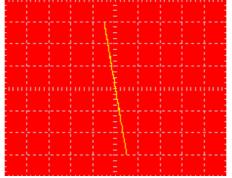
5. With reference to fig 5 and fig 2 complete table 3.

U	<u> </u>					
Result	Х	А	V _{IB}	V _{OB}	V _{oc}	Q
Theoretical						
Software						

Q should be selected to give maximum signal swing @ the output Table: 3

MOS Amplifier Characteristics

Procedure


- 1. Remove FG and Oscilloscope from fig 4.
- 2. Give 1.816 V as the gate potential.
- 3. Complete table 4.

Result	V _{DSQ}	I _{DQ}
Theoretical		
Software		

Table: 4

Region of Operation: _____ Overdrive Voltage:

- 4. Set the FG as 1 kHz, 1 mV amplitude with 1.816 V offset, sine.
- 5. Use AC coupling mode of oscilloscope. *CH1=Input, CH2=Output.*
- 6. Find the gain of amplifier.
- 7. Sketch amplifier characteristics in XY mode.

