Kathmandu University
 Department of Electrical and Electronics Engineering
 Digital logic laboratory experiments

Experiment: Verifying the characteristics table of different flip-flops, D, JK.. Synthesize T flipflop using D and JK flip-flop.

Components required:
IC 7473
Bread board
Resister (1K Ω)
IC 7476
Light emitting diode (LED)

Theory

D flip-flop: The basic building blocks of combinational logic circuits are gates. The basic building blocks of sequential logic circuits are flip flops. Flip flops are devices that use a clock. Each flip flop can store one bit of information.

D flip-flop characteristic table and diagram

\mathbf{D}	$\mathbf{Q (t + 1)}$	Operatio \mathbf{n}
$\mathbf{0}$	$\mathbf{0}$	Reset
$\mathbf{1}$	$\mathbf{1}$	Set

The D flip flop has two possible values. When $\mathbf{D}=\mathbf{0}$, the flip flop does a reset. A reset means that the output, \mathbf{Q} is set to 0 . When $\mathbf{D}=\mathbf{1}$, the flip flop does a set, which means the output \mathbf{Q} is set to 1 .

Procedure:

1. Connect the IC as per the given circuit diagram on the bread board.
2. Apply +5 V as logic 1 input and ground as logic 0 input.
3. Check outputs using LED.
4. Tabulate the observations

\Observation table of D flip flop

SN	D	$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$
1			
2			
3			
4			

T flip flop:

T flip flop has two possible values. When $\mathbf{T}=\mathbf{0}$, the flip flop does a hold. A hold means that the output, \mathbf{Q} is kept the same as it was before the clock edge. When $\mathbf{T}=\mathbf{1}$, the flip flop does a toggle, which means the output \mathbf{Q} is negated after the clock edge, compared to the value before the clock edge.

T flip-flop characteristic table

\mathbf{T}	$\mathbf{Q (t + 1)}$	Operation
$\mathbf{0}$	$\mathbf{0}$	No change
$\mathbf{1}$	$\mathbf{Q}^{\prime}(\mathbf{t})$	Toggle

T flip-flop Observation table

SN	T	$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$
1			
2			
3			
4			

JK flip flop:

JK flip flop is a universal flip-flop. It has no undefined states. It is always edge triggered. A JK flip flop has two control inputs, J and K . When $\mathbf{J K}=\mathbf{0 0}$, the flip flop holds. When $\mathbf{J K}=\mathbf{0 1}$, the flip flop resets. When $\mathbf{J K}=\mathbf{1 0}$, the flip flop sets. When $\mathbf{J K}=\mathbf{1 1}$, the flip flop toggles.

JK flip-flop characteristic table

\mathbf{J}	\mathbf{K}	$\mathbf{Q (t + 1)}$	Operation
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{Q (t)}$	No change
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	Reset
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	Set
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{Q}^{\prime}(\mathbf{t})$	Complemen \mathbf{t}

Observation table for JK flip-flop

SN	J	K	$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$
1				
2				
3				
4				
5				
6				
7				
8				

