Kathmandu University

Department of Electrical and Electronics Engineering

Digital logic laboratory experiments

Experiment: Verifying the characteristics table of different flip-flops, D, JK.. Synthesize T flip-flop using D and JK flip-flop.

Components required:

210000001 (11122)	IC 7473	Bread board	Resister	$(1K\Omega)$
	IC 7473	Bread board	Resister /	$(IK\Omega)$

IC 7476 Light emitting diode (LED)

Theory

D flip-flop: The basic building blocks of combinational logic circuits are gates. The basic building blocks of sequential logic circuits are flip flops. Flip flops are devices that use a clock. Each flip flop can store one bit of information.

D flip-flop characteristic table and diagram

D	Q(t+1)	Operatio
		n
0	0	Reset
1	1	Set

The D flip flop has two possible values. When $\mathbf{D} = \mathbf{0}$, the flip flop does a reset. A reset means that the output, \mathbf{Q} is set to 0. When $\mathbf{D} = \mathbf{1}$, the flip flop does a set, which means the output \mathbf{Q} is set to 1.

Procedure:

- 1. Connect the IC as per the given circuit diagram on the bread board.
- 2. Apply +5V as logic 1 input and ground as logic 0 input.
- 3. Check outputs using LED.
- **4.** Tabulate the observations

\Observation table of D flip flop

SN	D	Q(t)	Q(t+1)
1			
2			
3			
4			

T flip flop:

T flip flop has two possible values. When T=0, the flip flop does a hold. A hold means that the output, \mathbf{Q} is kept the same as it was before the clock edge. When T=1, the flip flop does a toggle, which means the output \mathbf{Q} is negated after the clock edge, compared to the value before the clock edge.

T flip-flop characteristic table

Т	Q(t+1)	Operation
0	0	No
		change
1	Q'(t)	Toggle

T flip-flop Observation table

SN	Т	Q(t)	Q(t+1)
1			
2			
3			
4			

JK flip flop:

JK flip flop is a universal flip-flop. It has no undefined states. It is always edge triggered. A JK flip flop has two control inputs, J and K. When JK = 00, the flip flop holds. When JK = 01, the flip flop resets. When JK = 10, the flip flop sets. When JK = 11, the flip flop toggles.

JK flip-flop characteristic table

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complemen t

Observation table for JK flip-flop

SN	J	K	Q(t)	Q(t+1)
1				
2				
3				
4				
5				
6				
7				
8				